Diatom Communities Past and Present – and Their Relevance to a National Lake Assessment Program

Donald Charles
Patrick Center for Environmental Research
Academy of Natural Sciences
Philadelphia, PA

Questions / Outline

- What is the diatom / paleo method? What can we learn?
- What lake-condition questions can be addressed? How quantified?
- How do you do the work field, lab, modeling?
- What are some examples?
- How could a diatom / paleo component be implemented?

Freshwater diatoms

Photos: K. Laird and B. Cumming; Fig. 5.4 in Smol (2002)

Environmental variable (e.g., pH, TP)

Diatom Inference Model for pH - Adirondacks

"Top-Bottom" Sediment Sampling Approach

J. Smol

Lake survey questions that can be addressed

- What was the pre-disturbance / reference condition?
- What is the range of natural variability?
- Have conditions changed?
- How? How much? How fast? When?
- What is the cause of the change?
- How much improvement can be expected?

Cumming et al., 1992, CJFAS

Paleoecological Investigation of Recent Lake Acidification (PIRLA II) NAPAP / AERP

Adirondack Park, NY

EMAP – Northeast Lakes

Diatom inferred TP change

EMAP – Northeast Lakes

Diatom inferred TP change

EMAP – Northeast Lakes

Diatom inferred CI change

Dixit et al. 1999, CJFAS

CORED LAKES

Shoreline Development

Macrophyte increase

Wisconsin DNR

Paleoecology and Diatoms in Minnesota

- How have MN lakes changed a statewide survey
- 2. Reference conditions and nutrient criteria linking federal mandate to state policy

MN Study 1. How have Minnesota lakes changed?

- 55 Minnesota lakes sampled (NLF,CHF, NGP, and WCBP ecoregions, & Metro area)
- 210-Pb dated sediment cores from 55 lakes
- surface sediments used in development of diatom-inference model
- diatoms studied in core samples from 1990, 1970, 1800, 1750
- looked at change in lakes between 1970 and 1990 (post Clean Water Act)
- looked at magnitude of change between pre-European water quality and 1990

Change from 1800 to the Present

Pre-European TP vs modern water quality by MN ecoregion

- 61 sediment cores from throughout Minnesota
- ecoregional patterns evident in Pre-European as well as modern-day TP
- NLF lakes minimally impacted, CHF lakes with elevated modern TP levels
- significantly different response between shallow and deep prairie lakes

MAT (° C) 2.1 - 4.0 4.1 - 6.0 6.1 - 8.0 8.1 - 10.0 10.1 - 12.0 Depth (m) 0 - 2.0 2.1 - 6.0 6.1 - 12.0 > 12.0

S. Fritz

124 natural lakes in grassland dominated landscapes

Also are 30 Nebraska Reservoirs & sand pits (not shown)

23 CT Lakes

Paleo Inferred change

> Pete Siver Conn. College L&O, 1999

Other Examples – Diatom Paleo Studies

- New England P. Siver, D. Koster, R. Davis
- Wisconsin P. Garrison
- MI J. Stevenson et al.
- MN S. Fritz, J. Ramstack, M. Edlund, R. Brugam
- Great Plains S. Fritz
- MT L. Bahls, ANSP
- Rocky Mtns. –A. Wolfe, J Saros, D. Beeson
- Pacific NW Y. Pan, J. Eilers, J. Ford, C. Wielhofer
- FL & SE T. Whitmore, E. Geiser
- European Diatom Database Initiative (EDDI)

Recommended Approach

- Analyze diatoms in top and bottom of sediment cores
- Use models based on existing and new calibration sets to infer at least TP, TN, conductivity, and pH; compare T&B species
- Calculate differences between current values and past (reference condition)
- Quantify condition; make population projections

Additional Optional Approaches

- Compare diatom-inferred reference conditions with reference-lake conditions
- Use paleo data to evaluate model hindcasts
- Examine multi-level stratigraphic trends in ²¹⁰Pb dated cores
- Analyze surface sediments only, if problems with lower intervals; analyze periphyton
- Analyze two samples from near bottom; use to calculate natural variability

Coring issues

- Equipment
- Field logistics
- Training
- Reservoirs

Glew Sediment Corer operation

From PEARL Website, Queen's Univ.

From PEARL Website, Queen's Univ. Brian Cumming

From PEARL Website, Queen's Univ.

From PEARL Website, Queen's Univ.

Diatom Taxonomy / Inference Models

- -- Issues for a National Lake Survey
- Need for consistent taxonomy
 - Common taxonomic list
 - Taxonomy workshops / documentation / images
- Use existing regional calibration sets; supplement with new data
- Make data available from Diatom Paleolimnology Data Cooperative
- Archive slides in museum collections

Conclusions

- Diatom / paleo approach may be best way to quantify lake health based on comparison of current and past (reference) conditions
- Methods tested and used widely; are effective
- Many existing calibration sets / models and experts
- Logistic requirements and costs reasonable

Acknowledgments

 Persons providing slides and helpful discussion: John Smol, Brian Cumming, Sushil Dixit, Mark Edlund, Sheri Fritz, Paul Garrison, Peter Siver